Connect with us

Fitness

Rural populations facilitated early SARS-CoV-2 evolution and transmission in Missouri, USA – npj Viruses

Published

on

  • Davies Nicholas, G. et al. Estimated transmissibility and impact of SARS-CoV-2 lineage B.1.1.7 in England. Science 372, eabg3055 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Allen H. et al. Household transmission of COVID-19 cases associated with SARS-CoV-2 delta variant (B.1.617.2): national case-control study. The Lancet Regional Health – Europe.

  • Meo, S. A., Meo, A. S., Al-Jassir, F. F. & Klonoff, D. C. Omicron SARS-CoV-2 new variant: global prevalence and biological and clinical characteristics. Eur. Rev. Med. Pharmacol. Sci. 25, 8012–8018 (2021).

    PubMed 

    Google Scholar
     

  • Planas, D. et al. Sensitivity of infectious SARS-CoV-2 B.1.1.7 and B.1.351 variants to neutralizing antibodies. Nat. Med. 27, 917–924 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Madhi, S. A. et al. Efficacy of the ChAdOx1 nCoV-19 Covid-19 Vaccine against the B.1.351 Variant. N. Engl. J. Med. 384, 1885–1898 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Jangra, S. et al. SARS-CoV-2 spike E484K mutation reduces antibody neutralisation. Lancet Microbe 2, e283–e284 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chia P. Y. et al. Virological and serological kinetics of SARS-CoV-2 Delta variant vaccine-breakthrough infections: a multi-center cohort study. 2021: 2021.07.28.21261295

  • Araf, Y. et al. Omicron variant of SARS-CoV-2: Genomics, transmissibility, and responses to current COVID-19 vaccines. J. Med. Virol. 94, 1825–1832 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • SARS-CoV-2 variants of concern as of 4 August 2022. August 5, 2022. https://www.ecdc.europa.eu/en/covid-19/variants-concern (accessed August 9, 2022)

  • Lin, L., Liu, Y., Tang, X. & He, D. The disease severity and clinical outcomes of the SARS-CoV-2 variants of concern. Front. Public Health 9, 775224 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Colson, P. et al. Analysis of SARS-CoV-2 variants from 24,181 patients exemplifies the role of globalization and zoonosis in pandemics. Front. Microbiol. 12, 786233 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • STAFF AC. One in Five Americans Live in Rural Areas. August 9, 2017. https://www.census.gov/library/stories/2017/08/rural-america.html (accessed August 7, 2022)

  • Cuadros, D. F., Branscum, A. J., Mukandavire, Z., Miller, F. D. & MacKinnon, N. Dynamics of the COVID-19 epidemic in urban and rural areas in the United States. Ann. Epidemiol. 59, 16–20 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mueller, J. T. et al. Impacts of the COVID-19 pandemic on rural America. Proc. Natl Acad. Sci USA. 118, 2019378118 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Huang, Q. et al. Urban-rural differences in COVID-19 exposures and outcomes in the South: a preliminary analysis of South Carolina. PLOS ONE 16, e0246548 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Melvin, S. C., Wiggins, C., Burse, N., Thompson, E. & Monger, M. The role of public health in COVID-19 emergency response efforts from a rural health perspective. Prevent. Chron. Dis. 17 (2020).

  • Dunne, E. M. et al. Investigation and public health response to a COVID-19 outbreak in a rural resort community—Blaine County, Idaho, 2020. PLOS ONE 16, e0250322 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Anzalone, A. J. et al. Higher hospitalization and mortality rates among SARS-CoV-2-infected persons in rural America. J. Rural Health 39, 39–54 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Ramírez, I. J. & Lee J. COVID-19 Emergence and social and health determinants in Colorado: a rapid spatial analysis. Int. J. Environ. Res. Public Health 17 (2020).

  • Sylvia, K. O. et al. SARS-CoV-2 transmission potential and rural-urban disease burden disparities across Alabama, Louisiana, and Mississippi, March 2020–May 2021. Ann. Epidemiol. 71, 1–8 (2022).

    Article 

    Google Scholar
     

  • Peters, D. J. Community susceptibility and resiliency to COVID‐19 across the rural‐urban continuum in the United States. J. Rural Health 36, 446–456 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kleynhans, J. et al. SARS-CoV-2 seroprevalence in a rural and urban household cohort during first and second waves of infections, South Africa, July 2020–March 2021. Emerg. Infect. Dis. 27, 3020–3029 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Covid-19 Cases Surpass 2.2 Million in Rural America. December 8, 2020. https://ruralhome.org/covid-19-cases-surpass-2-2-million-rural-america/ (accessed July 10, 2023).

  • Poterico, J. A. & Mestanza, O. Genetic variants and source of introduction of SARS-CoV-2 in South America. J. Med. Virol. 92, 2139–2145 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bindayna, K. M. & Crinion, S. Variant analysis of SARS-CoV-2 genomes in the Middle East. Micro. Pathog. 153, 104741- (2021).

    Article 

    Google Scholar
     

  • Du, P. et al. Genomic surveillance of COVID-19 cases in Beijing. Nat. Commun. 11, 5503- (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sjaarda, C. P. et al. Phylogenomics reveals viral sources, transmission, and potential superinfection in early-stage COVID-19 patients in Ontario, Canada. Sci. Rep. 11, 3697 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Washington, N. L. et al. Emergence and rapid transmission of SARS-CoV-2 B.1.1.7 in the United States. Cell 184, 2587–2594.e7 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Flores-Alanis, A. et al. Two years of evolutionary dynamics of SARS-CoV-2 in Mexico, with emphasis on the variants of concern. Front. Microbiol. 13, 886585 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jelley, L. et al. Genomic epidemiology of Delta SARS-CoV-2 during transition from elimination to suppression in Aotearoa New Zealand. Nat. Commun. 13, 4035 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Candido Darlan, S. et al. Evolution and epidemic spread of SARS-CoV-2 in Brazil. Science 369, 1255–1260 (2020).

    Article 

    Google Scholar
     

  • du Plessis, L. et al. Establishment and lineage dynamics of the SARS-CoV-2 epidemic in the UK. Science 371, 708–712 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Jha, N. et al. Geographical landscape and transmission dynamics of SARS-CoV-2 variants across India: a longitudinal perspective. Front. Genet. 12, 753648 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, J., Arun Kumar, S., Jhan, Y. Y. & Bishop, C. J. Engineering DNA vaccines against infectious diseases. Acta Biomater. 80, 31–47 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Walker, A. et al. Characterization of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection clusters based on integrated genomic surveillance, outbreak analysis and contact tracing in an urban setting. Clin. Infect. Dis. 74, 1039–1046 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Wilkinson, E. et al. A year of genomic surveillance reveals how the SARS-CoV-2 pandemic unfolded in Africa. Science 374, 423–431 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jia, H. L. et al. Genomic elucidation of a COVID-19 resurgence and local transmission of SARS-CoV-2 in Guangzhou, China. J. Clin. Microbiol. 59, e0007921 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Lemey, P. et al. Accommodating individual travel history and unsampled diversity in Bayesian phylogeographic inference of SARS-CoV-2. Nat. Commun. 11, 5110 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jesus, J. G. et al. Importation and early local transmission of COVID-19 in Brazil, 2020. Rev. Inst. Med. Trop. Sao Paulo 62, e30 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meuris, C. et al. Transmission of SARS-CoV-2 After COVID-19 screening and mitigation measures for primary school children attending school in Liège, Belgium. JAMA Netw. Open 4, e2128757-e (2021).

    Article 

    Google Scholar
     

  • Marks, M. et al. Transmission of COVID-19 in 282 clusters in Catalonia, Spain: a cohort study. Lancet Infect. Dis. 21, 629–636 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Polo, G., Soler-Tovar, D., Villamil Jimenez, L. C., Benavides-Ortiz, E. & Mera Acosta, C. SARS-CoV-2 transmission dynamics in the urban-rural interface. Public Health 206, 1–4 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Shu, Y. & McCauley, J. GISAID: global initiative on sharing all influenza data—from vision to reality. Eur. Surveill. 22, 30494 (2017).

    Article 

    Google Scholar
     

  • Elbe, S. & Buckland-Merrett, G. Data, disease and diplomacy: GISAID’s innovative contribution to global health. Glob Chall. 1, 33–46 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khare, S. et al. GISAID’s role in pandemic response. China CDC Wkly. 3, 1049–1051 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Santibañez, S. et al. Strengthening rural states’ capacity to prepare for and respond to emerging infectious diseases, 2013-2015. South Med. J. 112, 101–105 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Times TNY. Coronavirus (Covid-19) Data in the United States. 2021.

  • Coronavirus (Covid-19) Data in the US. 2021. https://github.com/nytimes/covid-19-data (accessed January 23, 2022).

  • Gangavarapu, K. et al. Outbreak.info genomic reports: scalable and dynamic surveillance of SARS-CoV-2 variants and mutations. Nat. Methods 20, 512–522 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • SARS-CoV-2 variants of concern as of 27 October 2022. October 27, 2022 (accessed November 1, 2022).

  • Voloch, C. M. et al. Genomic characterization of a novel SARS-CoV-2 lineage from Rio de Janeiro, Brazil. J. Virol. 95, e00119–21 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tang, C. Y. et al. SARS-CoV-2 and influenza co-infection: a cross-sectional study in central Missouri during the 2021–2022 influenza season. Virology 576, 105–110 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Higgins-Dunn N. The U.K. has identified a new Covid-19 strain that spreads more quickly. Here’s what they know. Consumer News and Business Channel (CNBC). 2020 December 19, 2020.

  • Tegally, H. et al. Emergence and rapid spread of a new severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) lineage with multiple spike mutations in South Africa. medRxiv https://doi.org/10.1101/2020.12.21.202486402020 (2020).

  • Yang, W. & Shaman, J. COVID-19 pandemic dynamics in India, the SARS-CoV-2 Delta variant and implications for vaccination. J R Soc Interface 19, 20210900 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • SA reaches grim milestone of 1 million Covid-19 cases. 2020 December 27, 2020.

  • Imai, M. et al. Characterization of a new SARS-CoV-2 variant that emerged in Brazil. Proc. Natl Acad. Sci. USA 118, e2106535118 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mendelson, M. et al. The political theatre of the UK’s travel ban on South Africa. Lancet 398, 2211–2213 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • La Rosa, G. et al. Key SARS-CoV-2 mutations of alpha, gamma, and eta variants detected in urban wastewaters in Italy by long-read amplicon sequencing based on nanopore technology. Water 13, 2503 (2021).

    Article 

    Google Scholar
     

  • Thompson, C. N. et al. Rapid emergence and epidemiologic characteristics of the SARS-CoV-2 B.1.526 variant—New York City, New York, January 1-April 5, 2021. MMWR Morb. Mortal. Wkly. Rep. 70, 712–716 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Stadtmüller, M. et al. Emergence and spread of a sub-lineage of SARS-CoV-2 Alpha variant B.1.1.7 in Europe, and with further evolution of spike mutation accumulations shared with the Beta and Gamma variants. Virus Evol. 8, veac010 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • England P. H. PHE investigating a novel variant of COVID-19. December 14, 2020 (accessed August 7, 2022).

  • Mwenda, M. et al. Detection of B.1.351 SARS-CoV-2 variant strain—Zambia, December 2020. MMWR Morb. Mortal. Wkly. Rep. 70, 280–282 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tegally, H. et al. Sixteen novel lineages of SARS-CoV-2 in South Africa. Nat. Med. 27, 440–446 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • The Lancet Infectious, D. Emerging SARS-CoV-2 variants: shooting the messenger. Lancet Infect. Dis. 22, 1 (2022).

    Article 

    Google Scholar
     

  • Stoddard, G. et al. Using genomic epidemiology of SARS-CoV-2 to support contact tracing and public health surveillance in rural Humboldt County, California. BMC Public Health 22, 456 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • George, C. E. et al. Seroprevalence of COVID-19 infection among vaccine naïve population after the second surge (June 2020) in a rural district of South India: a community-based cross-sectional study. PLoS ONE 17, e0265236 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Paul, R., Arif, A. A., Adeyemi, O., Ghosh, S. & Han, D. Progression of COVID-19 from urban to rural areas in the United States: A spatiotemporal analysis of prevalence rates. J. Rural Health 36, 591–601 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Otto, S. P. et al. The origins and potential future of SARS-CoV-2 variants of concern in the evolving COVID-19 pandemic. Curr. Biol. 31, R918–r29 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morrell, P. L., Toleno, D. M., Lundy, K. E. & Clegg, M. T. Estimating the contribution of mutation, recombination and gene conversion in the generation of haplotypic diversity. Genetics 173, 1705–1723 (2006).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, S. Y. et al. Stability of SARS-CoV-2 spike G614 variant surpasses that of the D614 variant after cold storage. mSphere 6, e00104–21 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lau, M. S. Y. et al. Characterizing superspreading events and age-specific infectiousness of SARS-CoV-2 transmission in Georgia, USA. Proc. Natl Acad. Sci. USA 117, 22430–22435 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jackson, B. et al. Generation and transmission of interlineage recombinants in the SARS-CoV-2 pandemic. Cell 184, 5179–88.e8 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Turakhia, Y. et al. Pandemic-scale phylogenomics reveals the SARS-CoV-2 recombination landscape. Nature 609, 994–997 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gribble, J. et al. The coronavirus proofreading exoribonuclease mediates extensive viral recombination. PLOS Pathog. 17, e1009226 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, Y., Hu, T., Gai, X., Zhang, Y. & Zhou, X. Transmission dynamics, heterogeneity and controllability of SARS-CoV-2: a rural-urban comparison. Int. J. Environ. Res. Public Health 18, 5221 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mourier, T. et al. SARS-CoV-2 genomes from Saudi Arabia implicate nucleocapsid mutations in host response and increased viral load. Nat. Commun. 13, 601 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, H. et al. Nucleocapsid mutations R203K/G204R increase the infectivity, fitness, and virulence of SARS-CoV-2. Cell Host Microbe 29, 1788–1801 e6 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Syed, A. M. et al. Rapid assessment of SARS-CoV-2-evolved variants using virus-like particles. Science 374, 1626–1632 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leary, S. et al. Generation of a Novel SARS-CoV-2 Sub-genomic RNA Due to the R203K/G204R Variant in Nucleocapsid: Homologous Recombination has Potential to Change SARS-CoV-2 at Both Protein and RNA Level. Pathog. Immun. 6, 27–49 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Davenport, S. et al. Health in Rural Missouri Biennial Report 2020-2021. https://health.mo.gov/living/families/ruralhealth/pdf/biennial2020.pdf (2021).

  • What unites and divides urban, suburban, and rural communities. https://www.pewresearch.org/socialtrends/2018/05/22/demographic-and-economic-trends-in-urban-suburban-and-rural-communities/ (2018) (Accessed November 1, 2022).

  • Turrini, G. et al. Access to Affordable Care in Rural America: Current Trends and Key Challenges (Research ReportNo. HP-2021-16). Office of the Assistant Secretary for Planning and Evaluation, U.S. Department of Health and Human Services (2021).

  • Korber, B. et al. Tracking changes in SARS-CoV-2 spike: evidence that D614G increases infectivity of the COVID-19 virus. Cell 182, 812–827.e19 (2020).

    Article 
    PubMed Central 

    Google Scholar
     

  • Cheng, Y. W. et al. D614G substitution of SARS-CoV-2 spike protein increases syncytium formation and virus titer via enhanced furin-mediated spike cleavage. mBio 12, e0058721 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Ahmadpour, D., Ahmadpoor, P. & Rostaing, L. Impact of circulating SARS-CoV-2 mutant G614 on the COVID-19 pandemic. Iran. J. Kidney Dis. 14, 331–334 (2020).

    PubMed 

    Google Scholar
     

  • Zhou, B. et al. SARS-CoV-2 spike D614G change enhances replication and transmission. Nature 592, 122–127 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Volz, E. et al. Evaluating the effects of SARS-CoV-2 spike mutation D614G on transmissibility and pathogenicity. Cell 184, 64–75.e11 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • United States Department of Agriculture, Economic Research Service. Rural-Urban Commuting Area Codes. (2023). https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ (Accessed on January 22, 2022).

  • Ruca Data: ZIP Code RUCA Approximation. https://depts.washington.edu/uwruca/ruca-approx.php (accessed May 12, 2022).

  • Li, T. et al. Rapid High-Throughput Whole-Genome Sequencing of SARS-CoV-2 by Using One-Step Reverse Transcription-PCR Amplification with an Integrated Microfluidic System and Next-Generation Sequencing. J. Clin. Microbiol. 59, e02784–02720 (2021).

  • Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 35, 1547–1549 (2018).

  • Tajima, F. & Nei, M. Estimation of evolutionary distance between nucleotide sequences. Mol. Biol. Evol. 1, 269–285 (1984).

  • Okoh, O. S. et al. Epidemiology and genetic diversity of SARS-CoV-2 lineages circulating in Africa. iScience 25, 103880 (2022).

  • Wan, X.-F., Chen, G., Luo, F., Emch, M. & Donis, R. A quantitative genotype algorithm reflecting H5N1 Avian influenza niches. Bioinformatics 23, 2368–2375 (2007).

  • Hadfield, J. et al. Nextstrain: real-time tracking of pathogen evolution. Bioinformatics 34, 4121–4123 (2018).

  • Duchene, S. et al. Temporal signal and the phylodynamic threshold of SARS-CoV-2. Virus Evol. 6, veaa061 (2020).

  • Lu, J. et al. Genomic Epidemiology of SARS-CoV-2 in Guangdong Province, China. Cell 181, 997–1003.e1009 (2020).

  • Holder, M. T., Sukumaran, J. & Lewis, P. O. A Justification for Reporting the Majority-Rule Consensus Tree in Bayesian Phylogenetics. Syst. Biol. 57, 814–821 (2008).

  • Faria Nuno, R. et al. The early spread and epidemic ignition of HIV-1 in human populations. Science 346, 56–61 (2014).

  • Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2 – Approximately Maximum-Likelihood Trees for Large Alignments. PLOS ONE 5, e9490 (2010).

  • Rambaut, A. et al. A dynamic nomenclature proposal for SARS-CoV-2 lineages to assist genomic epidemiology. Nat. Microbiol. 5, 1403–1407 (2020).

  • Kosakovsky Pond, S. L., Posada, D., Gravenor, M. B., Woelk, C. H. & Frost, S. D. W. Automated Phylogenetic Detection of Recombination Using a Genetic Algorithm. Mol. Biol. Evol. 23, 1891–1901 (2006).

  • Murrell, B. et al. FUBAR: A Fast, Unconstrained Bayesian AppRoximation for Inferring Selection. Mol. Biol. Evol. 30, 1196–1205 (2013).

  • Kosakovsky Pond, S. L. et al. HyPhy 2.5-A Customizable Platform for Evolutionary Hypothesis Testing Using Phylogenies. Mol. Biol. Evol. 37, 295–299 (2020).

  • Bouckaert, R. et al. BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 15, e1006650 (2019).

  • Xu, Y. et al. Low-Pathogenic Influenza A Viruses in North American Diving Ducks Contribute to the Emergence of a Novel Highly Pathogenic Influenza A(H7N8) Virus. J. Virol. 91, e02208–02216 (2017).

  • Bielejec, F. et al. SpreaD3: Interactive Visualization of Spatiotemporal History and Trait Evolutionary Processes. Mol. Biol. Evol. 33, 2167–2169 (2016).

  • Wickham H. ggplot2: Elegant Graphics for Data Analysis. (Springer-Verlag New York, 2016). https://ggplot2.tidyverse.org.

  • Continue Reading
    Click to comment

    Leave a Reply

    Your email address will not be published. Required fields are marked *